
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyzing the Influence of Pollutants and Meteorological Conditions on PM2.5 Concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Fine particulate matter (PM2.5), a type of tiny particle in the air with a width of two and one-half 

micrometers or less, is considered to be one of the atmospheric pollutants whose effects are the greatest 

on public health. In 2012, air pollution in urban and outdoor areas caused 3.7 million people’s death in the 

world (Li et al. 2017), and the World Health Organization (WHO) designated it as a Group 1 carcinogen 

(WHO 2017). 

Beijing, a fast-growing capital city with a large urban population, has suffered from PM2.5 in the 

last 20 years. In 2013, the severity of the air pollution problems in Beijing peaked. According to data 

from Beijing municipal environmental monitoring center, the air quality approached a heavy pollution 

degree, and the concentrations of PM2.5 reached up to 1000 µg/m³ (Li et al. 2014). Serious air pollution 

not only causes health risks and economic losses but also affects the city’s image in front of the world. In 

order to improve air quality, Beijing launched its “Five-year Clean Air Action Plan” from 2013 to 2017, 

aiming to accelerate the process of reducing the concentration of pollutants (Xu et al. 2021). 

Since PM2.5 is a big part of the air quality concern, several research studies have focused on this 

specific type of air component. In particular, previous studies have shown that there is a close relationship 

between the level of PM2.5 and other air pollution sources. For example, a moderate to strong positive 

correlation was found in PM2.5 with SO2 (𝑟 = 0.449) and with NO2 (𝑟 = 0.498) (Xie et al. 2015). Other 

research also implied the influence of meteorological conditions on PM2.5 concentrations: spatial and 

temporal patterns of PM2.5 are closely analyzed by causality analysis models, and interaction between 

PM2.5 and temperature, wind speed, wind direction, humidity, precipitation, radiation, atmospheric 

pressure, and planetary boundary layer height. (Chen et al. 2020) This leads to a discussion of the effect 

of other air pollutants and meteorological conditions on PM2.5. 

The purpose of this project is to focus on the level of SO2, NO2, CO, and O3 and the weather 

conditions, including temperature, air pressure, wind direction, and precipitation to model how they 

correlate with, and potentially impact, the concentration of PM2.5. After understanding the potential 

interactions between PM2.5 and these factors, a detailed evaluation of the effectiveness of the current 

policies enacted in Beijing will be provided, and suggestions for future actions will be given. 

 

Methods 

The data set used in the article was obtained from the UCI Machine Learning Repository, an 

online platform that contains collections of databases, domain theories, and data generators for empirical 

analysis (Zhang et al. 2017). Song Xi Chen from the Guanghua School of Management of Peking 

University collected this data set for research paper Assessing Beijing’s PM2.5 Pollution: Severity, 
Weather Impact, APEC and Winter Heating (Liang et al. 2015). The observations in the dataset are the 

hourly air pollutants data from 12 nationally controlled air-quality monitoring sites, including PM2.5, 

PM10, SO2, NO2, CO, and O3, all of which are measured in 𝜇𝑔/𝑚3, as well as temperature (°C), pressure 

(hPa), dew point temperature (°C), precipitation (mm), wind direction, and wind speed (m/s). 

Note that the particular interest of this study is only the site Tiantan since Tiantan is one of the 

most famous scenic spots and historical sites in Beijing: its large exposure to citizens and tourists makes it 

a good representation of the overall air quality in Beijing. The Tiantan air quality data used is part of the 
“Beijing Multi-Site Air-Quality Data Data Set” obtained by the Beijing Municipal Environmental 

Monitoring Center. The full dataset that was downloaded includes information from 12 nationally 

controlled air quality monitoring sights around Beijing. Additionally, data from the nearest weather 

station from the Chinese Meteorological Administration was used to supplement this data. The data were 

collected between March 1st, 2013, and February 28th, 2017. 

 

Result 

Multiple linear regression models were used when analyzing the data. According to the dataset, 
the response variable PM2.5 is continuous and quantitative; so are the levels of PM10, SO2, NO2, CO, O3, 

temperature, pressure, and rain. The purpose of conducting a multiple linear regression is to see the power 



of influence of the eight independent variables on the level of PM2.5. This could also be used to predict 

the future level of PM2.5 and provide insight into which factors should be controlled the most. 

To achieve the optimal model with the least possible number of variables, an AIC backward 

selection was employed in the original regression model. According to the result, pressure (PRES) should 

be removed from the model. Having PM2.5 as the response variable, PM10, SO2, NO2, CO, O3, TEMP, 

and RAIN will generate the lowest AIC (224741.5), indicating that the best fit model for the PM2.5 is: 

PM2.5 = 𝛽0 + 𝛽1PM10+ 𝛽2SO2 + 𝛽3NO2 + 𝛽4CO+ 𝛽5O3 + 𝛽6TEMP+ 𝛽7RAIN + 𝜀 

Before continuing with the analysis, the normality and constant variance assumptions for 

regression were checked. To begin with, for a linear regression to be appropriate to use, the residuals 

should be normally distributed. A histogram of the residuals generated by the AIC-selected model was 

plotted (Figure 1). According to the plot, the residuals are centered at 0 and are roughly bell-shaped, 

generally implying a normal distribution. However, different conclusions were drawn when a quantile-

quantile plot (QQ-plot) was graphed (Figure 2). Since the data points do not lie on the straight line, the 

distribution of the residuals is not normal, indicating that the normality assumption is not met. This might 

be due to the time-series characteristic or the long tail, symmetric distribution of the dataset. 

Moving on, the common variance of residuals was verified by graphing the diagnostic plots. The 

fitted values were plotted on the x-axis, and the residuals for the model were graphed on the y-axis 

(Figure 3). The plot shows that there is a lower bound cutoff on the residual values. The plot also presents 

a “conning effect” of the residuals, which could indicate the heteroscedasticity of variances. Aiming to 

resolve the non-constant variance, logarithm (Figure 4) and square root (Figure 5) transformations were 

employed for the response variable. However, heteroscedasticity of variances still existed, which might be 

probably due to a variable in the dataset (either a predictor or the response) that has a natural boundary on 

it that is cutting off the data on the lower side. 

Finally, outliers and influential data points were examined. Here, outliers were defined as data 

points that are outside three standard deviations from the mean (𝑧 < −3 or 𝑧 > 3); influential data points 

were defined as observations with Cook’s Distance greater than the 50th percentile of the F distribution 

with 𝑣1 = 7 and 𝑣2 = 32835 degrees of freedom. 462 outliers were found, and no influential data points 

were observed. According to the scatter plot of the level of PM2.5 across the time points (Figure 6), the 

red points represent the outliers. These outliers would not be ignored from the dataset because most of 

them are on the higher end of the distribution of PM2.5 with an approximate cyclical trend across the 

time. This might be due to the assumptions not being met for linear regression and suggests that other 

models should be employed in the future to see if they provide a better fit for the data. Note that the data 

were measured and collected on a timely basis, meaning that the independence assumption might be 

violated. This potential issue could possibly be solved by performing a time series analysis. However, 

since the knowledge learned didn’t support such modeling and research, multiple linear regression models 

were used for the following analysis. 

After testing the conditions, the results from the AIC-selected model were investigated. The 

equation below was the expression of the concentration of PM2.5 in terms of the level of PM10, SO2, 

NO2, CO, O3, temperature, and precipitation. 
PM2.5 = −22.069 + 0.566PM10 + 0.019SO2 + 0.185NO2 + 0.0216CO + 0.038O3 + 0.276TEMP+ 0.913RAIN + ε 

According to this, the level of PM10, SO2, NO2, CO, O3, temperature, and precipitation are all 

positively correlated with the level of PM2.5. Among these variables, precipitation, temperature, and 

PM10 have the largest coefficients, indicating that they impose a greater influence on the level of PM2.5. 

What’s more, a high adjusted 𝑅2 of 0.8532 suggests that around 85% of the variation in PM2.5 can be 

explained by the linear relationships with the explanatory variables in this model. This is relatively high, 

indicating that the model has a high goodness of fit. 

 

Discussion 

Based on the results, except for pressure, all other variables originally hypothesized to affect the 

response were statistically significant in predicting PM2.5. This is reasonable because pressure might 

have a competing predictive power with precipitation since low pressure often causes more rain (Yu et al. 



2018). Practically, the positive correlation between temperature and PM2.5 concentration can be 

empirically justified: because of the temperate continental climate in Beijing, the wind is lower during 

summer, which makes the pollutants suspended in the still air for a longer time, whereas the howling 

wind during winter promotes the diffusion of the pollutants and thus decrease the level of PM2.5. 

As mentioned above, there are serious limitations related to the use of the linear model. When 

checking the assumptions for linear regression, three violations were observed: the data points in the 

dataset are not independent of each other, the residuals are not normally distributed, and there is no 

common variance for the residuals. Because of this, a linear regression model should be used with caution 

even if it provides a high adjusted 𝑅2, especially when there is huge cyclical fluctuation for the response 

variable across the time. 

Broadly speaking, these models are still not sufficient to decide which variables provide the 

greatest influence on the level of PM2.5, since a dominant factor was not found here. For future research, 

factor analysis can be conducted, and structural equation models can be built to group observed variables 

into factors to better understand the existence of the latent variables. Moreover, for data collection, more 

information should be collected for each month, such as the level of human activities, to help researchers 

get a sense of how the level of PM2.5 is related to people’s daily life. This can also help the citizens be 

aware of the air condition issues and make policies or change their lifestyle based on the results. 

 

Conclusion 

The meteorological conditions are hard to control, but the level of other pollutants such as PM10, 

SO2, NO2, CO, and O3 can be manually adjusted or manipulated through policies. Since the level of these 

pollutants usually changes accordingly with PM2.5 concentration, it’s reasonable to assume that these 

pollutants might come from the same source or might have interaction effects on each other. Thus, if 

other pollutants are controlled properly, the level of PM2.5 may also be restricted effectively. 

 In the National Air Quality Action Plan (2013), the Chinese government implemented several 

policies regarding coal combustion limitation, vehicle emission standards, and transparent air quality 

reporting. Results show that coal combustion contributes to 40% of the total PM2.5 concentration on the 

national average (Ma, et al. 2017). Since 2013, new coal-fired plants were prohibited in target regions, 

and existing coal plants were required to reduce emissions or be replaced with natural gas. In 2017, 

China’s largest coal producer Shanxi Province closed 27 coal mines. By early 2018, Beijing had shut 

down its last coal-fired power plant and canceled its future building plan (Air Quality Life Index). These 

actions reduced coal combustion pollutants such as SO2, CO, and NO2, which might indirectly control the 

PM2.5 concentration. 

 Moreover, in large cities such as Beijing, Shanghai, and Guangzhou, the number of cars on the 

road on any given day and the number of new license plates issued each year were restricted to control 

vehicle emissions. The emissions standards were strictly enforced as well. “In late 2017, China suspended 

the production of 553 car models that do not meet fuel economy standards, including the ones made by 

foreign and state-run companies.” (Air Quality Life Index) Controlling vehicle emissions and 

implementing stricter standards for fuel standards, the Chinese government successfully controlled the 

emission of PM2.5, PM10, SO2, NO2, and CO. 
 Last but not least, China has built a nationwide network of air pollution monitors and makes the 

data available to the public. Over 5000 monitoring stations were built in China by March 2017 (Air 

Quality Life Index). The increasing transparency in government reporting of air quality statistics 

increased public awareness and engagement in controlling air quality and facilitated the process of 

reducing PM2.5 concentrations.  

 Other than directly controlling PM2.5 concentration in the air, reducing emissions of other 

polluted particles such as PM10, SO2, NO2, and CO is also an effective approach, and the Chinese 

government has already put great effort into improving the air quality. The policies above aligned with 
the conclusion of this study, and they indeed effectively reduced PM2.5 concentration and improved air 

quality in Beijing. The next step would be to continue the implementation of these policies and adjust 

based on the future predictions and analysis of PM2.5 concentration. 
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